// Copyright 2024 SquareBlock Inc. All Rights Reserved. // Author: tianlei.richard@qq.com (tianlei.richard) #include #include "spdlog/spdlog.h" #include #include "minus_renderer.h" #include "rasterizer.h" MinusRenderer::MinusRenderer(float near, float far, float fov, float aspect_ratio) : near_(near), far_(far), fov_(fov), aspect_ratio_(aspect_ratio), projection_matrix_(orthographic_transform() * squish_transform()) { spdlog::info("near: {}, far: {}, fov: {}, aspect ratio: {}", near_, far_, fov_, aspect_ratio_); } void MinusRenderer::set_meshes(const std::vector &meshes) { meshes_ = meshes; spdlog::info("Mesh size: {}, the primitives size of the first mesh: {}", meshes_.size(), meshes_.front().get_primitives().size()); } float MinusRenderer::calculate_height(const float fov, const float near) { return std::fabs(near) * std::tan(fov * 0.5) * 2; } float MinusRenderer::calculate_width(const float height, const float ratio) { return height * ratio; } TransformMatrix MinusRenderer::squish_transform() { // Frustum to Cuboid return TransformMatrix{{near_, 0, 0, 0}, {0, near_, 0, 0}, {0, 0, near_ + far_, -near_ * far_}, {0, 0, 1, 0}}; } TransformMatrix MinusRenderer::orthographic_transform() { const float height = calculate_height(fov_, near_); const float width = calculate_width(height, aspect_ratio_); const float right = width * 0.5; const float left = -right; const float top = height * 0.5; const float bottom = -top; TransformMatrix m{{1, 0, 0, -0.5 * (right - left)}, {0, 1, 0, -0.5 * (top - bottom)}, {0, 0, 1, -0.5 * (far_ - near_)}, {0, 0, 0, 1}}; m = TransformMatrix{{2 / (right - left), 0, 0, 0}, {0, 2 / (top - bottom), 0, 0}, {0, 0, 2 / std::fabs(far_ - near_), 0}, {0, 0, 0, 1}} * m; return m; } TransformMatrix MinusRenderer::view_port_transform(const float width, const float height) { return TransformMatrix{{width * 0.5, 0, 0, width * 0.5}, {0, height * 0.5, 0, height * 0.5}, {0, 0, 1, 0}, {0, 0, 0, 1}}; } std::tuple MinusRenderer::calculate_barycentric_coordinate(const Triangle &t, const Point2d &p) { const auto &points = t.get_vertex_position(); const auto &A = (points[0]).head(2); const auto &B = (points[1]).head(2); const auto &C = (points[2]).head(2); double alpha = (-(p.x() - B.x()) * (C.y() - B.y()) + (p.y() - B.y()) * (C.x() - B.x())) / (-(A.x() - B.x()) * (C.y() - B.y()) + (A.y() - B.y()) * (C.x() - B.x())); double beta = (-(p.x() - C.x()) * (A.y() - C.y()) + (p.y() - C.y()) * (A.x() - C.x())) / (-(B.x() - C.x()) * (A.y() - C.y()) + (B.y() - C.y()) * (A.x() - C.x())); double gamma = 1. - alpha - beta; return {alpha, beta, gamma}; } void MinusRenderer::model_transform(const TransformMatrix &mtx) { for (auto &m : meshes_) { for (auto &t : m.get_primitives()) { const auto &[res, _] = apply_transform(mtx, t.get_vertex_position()); t.set_points(res); } } } void MinusRenderer::view_transform(const TransformMatrix &mtx) { for (auto &m : meshes_) { for (auto &t : m.get_primitives()) { const auto &[res, _] = apply_transform(mtx, t.get_vertex_position()); t.set_points(res); } } } cv::Mat MinusRenderer::render(const int resolution_width, const int resolution_height) { std::vector meshes = meshes_; std::vector> perspective_coeff(meshes.size()); Rasterizer rasterizer{resolution_width, resolution_height}; for (int mesh_index = 0; mesh_index < meshes.size(); ++mesh_index) { auto &mesh = meshes[mesh_index]; auto &primitives = mesh.get_primitives(); perspective_coeff[mesh_index] = std::vector(mesh.get_vertex_size(), 1.); for (int i = 0; i < primitives.size(); ++i) { auto &t = primitives[i]; const auto &triangle_vertices = t.get_vertex_position(); const auto &[projective_res, w] = apply_transform(projection_matrix_, triangle_vertices); const auto &indices = t.get_vertex_index(); for (int j = 0; j < indices.size(); ++j) { perspective_coeff[mesh_index][indices[j]] = w[j]; } const auto &[res, _] = apply_transform( view_port_transform(resolution_width, resolution_height), projective_res); t.set_points(res); } } const auto &shading_points = rasterizer.rasterize(meshes); assert(!shading_points.empty()); cv::Mat color_image(shading_points.size(), (shading_points[0]).size(), CV_8UC3); for (int y = 0; y < shading_points.size(); ++y) { for (int x = 0; x < shading_points[y].size(); ++x) { auto &pixel_color = color_image.at(shading_points.size() - y - 1, x); pixel_color = cv::Vec3b(0, 0, 0); const auto &p = shading_points[y][x]; if (p.triangle.mesh_index >= 0 && p.triangle.mesh_index < meshes.size()) { const auto &mesh = meshes[p.triangle.mesh_index]; const auto &primitives = mesh.get_primitives(); if (p.triangle.triangle_index >= 0 && p.triangle.triangle_index < primitives.size()) { const auto &triangle = primitives[p.triangle.triangle_index]; const auto &[alpha, beta, gamma] = calculate_barycentric_coordinate( triangle, Point2d{x + 0.5, y + 0.5}); std::vector triangle_uv; std::vector triangle_normal; std::vector w_coeff; for (const auto vertex_index : triangle.get_vertex_index()) { triangle_uv.push_back(mesh.get_texture_coordinate(vertex_index)); triangle_normal.push_back(mesh.get_normal_vector(vertex_index)); w_coeff.push_back( perspective_coeff[p.triangle.mesh_index][vertex_index]); } // TODO(tianlei): 推导一下为什么需要除以下面这个 // 在 screen space 对 1/w 的插值就相当于在 world space 对 w 的插值 auto w_reciprocal = alpha * (1. / w_coeff[0]) + beta * (1. / w_coeff[1]) + gamma * (1. / w_coeff[2]); Point2d uv{(alpha * (triangle_uv[0].x() / w_coeff[0]) + beta * (triangle_uv[1].x() / w_coeff[1]) + gamma * (triangle_uv[2].x() / w_coeff[2])) / w_reciprocal, (alpha * (triangle_uv[0].y() / w_coeff[0]) + beta * (triangle_uv[1].y() / w_coeff[1]) + gamma * (triangle_uv[2].y() / w_coeff[2])) / w_reciprocal}; Point3d normal{ alpha * triangle_normal[0].x() + beta * triangle_normal[1].x() + gamma * triangle_normal[2].x(), alpha * triangle_normal[0].y() + beta * triangle_normal[1].y() + gamma * triangle_normal[2].y(), alpha * triangle_normal[0].z() + beta * triangle_normal[1].z() + gamma * triangle_normal[2].z()}; auto &material = mesh.get_material(); pixel_color = material->shade( Vertex{Point3d{x, y, p.depth}, normal, uv}, Point3d{}); } } } } return color_image; }